

Welcome to Cleaver’s documentation!

Cleaver is an open-source multimaterial tetrahedral meshing tool developed by the NIH Center for Integrative Biomedical Computing at the University of Utah Scientific Computing and Imaging (SCI) Institute.

	About

	Getting Started
	Introduction

	System requirements

	Using Installer

	Using Python

	Using 3D Slicer

	Using C++ and CMake

	Manual

	Building

	API

About

Overview

Cleaver is an open-source multi-material tetrahedral meshing tool that creates conforming tetrahedral meshes for multimaterial or multiphase volumetric data. These meshes ensure both geometric accuracy and bounded element quality using the Lattice Cleaving algorithm.

Method

The Cleaver Library is based on the Lattice Cleaving algorithm.

The method is a stencil-based approach, and relies on an octree structure to provide a coarse level of grading in regions of homogeneity. The cleaving algorithm works by utilizing indicator functions, which indicate the strength or relative presence of a particular material. At each point, only the
material with the largest indicator value is considered present.

The method is theoretically guaranteed to produce valid meshes with bounded dihedral angles, while still conforming to multimaterial material sur-
faces. Empirically these bounds have been shown to be well within useful ranges, thus creating efficient meshes for analysis, simulation, and visualization.

Reference:

Bronson J., Levine, J., Whitaker R., “Lattice Cleaving: Conforming Tetrahedral Meshes of Multimaterial Domains with Bounded Quality”. Proceedings of the 21st International Meshing Roundtable (San Jose, CA, Oct 7-10, 2012)

See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190882/

Authors

Cleaver is an open-source project with a growing community of contributors. The software was initially developed by the NIH Center for Integrative Biomedical Computing at the University of Utah Scientific Computing and Imaging (SCI) Institute.

Many Cleaver contributors are listed in the Contributors Graph [https://github.com/SCIInstitute/Cleaver/graphs/contributors]. However, the following authors have made significant contributions to the conception, design, or implementation of the software and are considered “The Cleaver Developers”:

	Jonathan Bronson

	Brig Bagley

	Jess Tate

	Ally Warner

	Dan White

	Ross Whitaker

Acknowledgement

This project was supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant numbers P41 GM103545 and R24 GM136986.

Citing Cleaver

When citing Cleaver in your scientific research, please mention the following work to support increased visibility and dissemination of our software:

Cleaver: A MultiMaterial Tetrahedral Meshing Library and Application. Scientific Computing and Imaging Institute (SCI), Download from: http://www.sci.utah.edu/software.html, 2015.

For your convenience, you may use the following BibTex entry:

@Misc{SCI:Cleaver,
 author = "CIBC",
 year = "2015",
 note = "Cleaver: A MultiMaterial Tetrahedral Meshing
 Library and Application. Scientific Computing and
 Imaging Institute (SCI), Download from:
 http://www.sci.utah.edu/software.html",
 keywords = "Cleaver, CIBC",
}

Bibliography

Below is a list of publications that reference Cleaver.

Note

Please note that this list only includes citations from publications published after 2017 and not involving researchers or developers from the SCI Institute.

	Frank Abdi, Harsh Baid, Rashid Miraj, Beth Clarkson, and Jacob Fish. Computational approaches for composite materials. In Composite Materials Qualification. Begell House, 2021.

	Sahar Bakhshian, Zhuofan Shi, Muhammad Sahimi, Theodore T Tsotsis, and Kristian Jessen. Image-based modeling of gas adsorption and deformation in porous media. Scientific reports, 8(1):1–12, 2018.

	Julia Boonzaier, Petar I Petrov, Willem M Otte, Nickolay Smirnov, Sebastiaan FW Neggers, and Rick M Dijkhuizen. Design and evaluation of a rodent-specific transcranial magnetic stimulation coil: an in silico and in vivo validation study. Neuromodulation: Technology at the Neural Interface, 23(3):324–334, 2020.

	Mar Cortes, Laura Dubreuil Vall, Giulio Ruffini, Douglas Labar, and Dylan Edwards. Transcranial direct current stimulation in chronic spinal cord injury: quantitative eeg study. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(1):e13, 2017.

	Fotios Drakopoulos. Finite element modeling driven by health care and aerospace applications. PhD thesis, Old Dominion University, 2017.

	Jacob Fish and Nan Hu. Multiscale modeling of femur fracture. International Journal for Numerical Methods in Engineering, 111(1):3–25, 2017.

	Kathleen M Friel, Peter Lee, Disha Gupta, Hsing-Ching Kuo, Ana RP Smorenburg, and Dylan J Edwards. Combined transcranial direct current stimulation and upper extremity robotic therapy improves upper extremity function in an adult with cerebral palsy: a pilot study. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(1):e13, 2017.

	Eloy García, Yago Diez, Oliver Diaz, Xavier Lladó, Robert Martí, Joan Martí, and Arnau Oliver. A step-by-step review on patient-specific biomechanical finite element models for breast mri to x-ray mammography registration. Medical physics, 45(1):e6–e31, 2018.

	Ho Quang Nguyen, Tien Tuan Dao, Alain Rassineux, and Marie Christine Ho Ba Tho. Material-driven mesh of the lumbar spine derived from ct data. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6(2):128–136, 2018.

	Anh Phong Tran and Qianqian Fang. Fast and high-quality tetrahedral mesh generation from neuroanatomical scans. arXiv preprint arXiv:1708.08954, 2017.

	Anh Phong Tran, Shijie Yan, and Qianqian Fang. Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models. Neurophotonics, 7(1):015008, 2020.

	Laura Dubreuil Vall, Mar Cortes, Dylan Edwards, Giulio Ruffini, and David Putrino. Eeg recordings during sham control transcranial direct current stimulation protocol. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(1):e13, 2017.

	Jared Vicory, Ethan Murphy, and Ryan J Halter. Creation and visualization of high-quality tetrahedral meshes from segmentations using 3d slicer. ELECTRICAL IMPEDANCE TOMOGRAPHY, pages 55, 2018.

	Charlotte E Vorwald, Shreeya Joshee, and J Kent Leach. Spatial localization of endothelial cells in heterotypic spheroids influences notch signaling. Journal of Molecular Medicine, 98(3):425–435, 2020.

	Chuan Wang, Jie Zhu, Yanwen Guo, and Wenping Wang. Video vectorization via tetrahedral remeshing. IEEE Transactions on Image Processing, 26(4):1833–1844, 2017.

	Karissa M Wang, Amanda J Rickards, Trevor Bingham, Jonathan D Tward, and Ryan G Price. Evaluation of a silicone-based custom bolus for radiation therapy of a superficial pelvic tumor. Journal of Applied Clinical Medical Physics, pages e13538, 2022.

	Jing Xu. Automatic Linear and Curvilinear Mesh Generation Driven by Validity Fidelity and Topological Guarantees. PhD thesis, Old Dominion University, 2020.

	Jing Xu and Andrey N Chernikov. Homeomorphic tetrahedralization of multi-material images with quality and fidelity guarantees. Procedia engineering, 203:40–52, 2017.

	Jiayi Yao, Xiuju Wu, Daoqin Zhang, Lumin Wang, Li Zhang, Eric X Reynolds, Carlos Hernandez, Kristina I Boström, Yucheng Yao, and others. Elevated endothelial sox2 causes lumen disruption and cerebral arteriovenous malformations. The Journal of clinical investigation, 129(8):3121–3133, 2019.

Getting Started

Introduction

Consider reading the Cleaver Manual.

System requirements

	Windows 10+, macOS 10.12+, and Ubuntu 20.04 or OpenSuse 15.1+ Recommended.

	CPU: Core Duo or higher, recommended i5 or i7

	Memory: 4Gb, recommended 8Gb or more

	Dedicated Graphics Card (OpenGL 4.1+, Dedicated Shared Memory, no integrated graphics cards)

	Graphics Memory: minimum 128MB, recommended 256MB or more

Caution

The following graphics cards are known to not support Cleaver:

	AMD Radeon HD 6310 (Integrated Card)

	AMD Radeon 7400 M

	INTEL HD 3000 (Integrated Card)

Using Installer

	Download the latest installers [https://github.com/SCIInstitute/Cleaver/releases/latest].

	Learn about the Cleaver Command Line Tool and Graphical Interface.

Tip

If there is no installer available for your platform, you may consider using python, installing the SlicerSegmentMesher extension or building Cleaver from source.

Using Python

Cleaver is available as Python wheels distributed on PyPI for Windows, macOS and Linux for integrating in either an ITK or VTK filtering pipeline.

ITK

	Create a virtual environment [https://docs.python.org/3/library/venv.html] then install the itk-cleaver package:

pip install itk-cleaver

[image: PyPI] [https://pypi.org/project/itk-cleaver/]

	Generate multi-material tetrahedral mesh from a label image

import itk

image = itk.imread('./mickey.nrrd')

tet_mesh, triangle_mesh = itk.cleaver_image_to_mesh_filter(image)

itk.meshwrite(triangle_mesh, './triangle_mesh.vtk')

VTK

[image: Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.] [https://www.repostatus.org/#wip]

Using 3D Slicer

Download 3D Slicer [https://download.slicer.org] and install the SlicerSegmentMesher [https://github.com/lassoan/SlicerSegmentMesher#readme] extension that enables creating volumetric meshes from segmentation using Cleaver.

Using C++ and CMake

See Building Cleaver as well as the Cleaver Library manual.

Manual

Command Line Tool

Using the sphere indicator functions in src/test/test_data/input/, you can generate a simple tet mesh using the following command:

bin/cleaver-cli --output_name spheres -i ../src/test/test_data/input/spheres*.nrrd

Type:

bin/cleaver-cli --help

For a list of command line tool options.

Command line flags:
-a [--alpha] arg initial alpha value
-s [--alpha_short] arg alpha short value for constant element sizing method
-l [--alpha_long] arg alpha long value for constant element sizing method
-b [--background_mesh] arg input background mesh
-B [--blend_sigma] arg blending sigma for input(s) to remove alias artifacts
-m [--element_sizing_method] arg background element sizing method (adaptive [default], constant)
-F [--feature_scaling] arg feature size scaling (higher values make a coaser mesh)
-j [--fix_tet_windup] ensure positive Jacobians with proper vertex wind-up
-h [--help] display help message
-i [--input_files] arg material field paths or segmentation path
-L [--lipschitz] arg maximum rate of change of element size (1 is uniform)
-f [--output_format] arg output mesh format (tetgen [default], scirun,
 matlab, vtk, ply [surface mesh only])
-n [--output_name] arg output mesh name (default 'output')
-o [--output_path] arg output path prefix
-p [--padding] arg volume padding
-r [--record] arg record operations on tets from input file
-R [--sampling_rate] arg volume sampling rate (lower values make a coarser mesh)
-S [--segmentation] the input file is a segmentation file
 [--simple] use simple interface approximation
-z [--sizing_field] arg sizing field path
-t [--strict] warnings become errors
-e [--strip_exterior] strip exterior tetrahedra
-w [--write_background_mesh] write background mesh
-v [--verbose] enable verbose output
-V [--version] display version information

Graphical Interface

You can run the GUI from the command line, or by double-clicking it in a folder.

gui/cleaver-gui.app

You should see a window similar to this:
[image: Cleaver Window]
Load the spheres in src/test/test_data/input either with ctrl+v or File -> Import Volume, or load your own indicator functions or segmentation file.

Dialog Indicator Function Check: Click the check in the dialog if you are importing individual indicator functions.
Blending Function Sigma: Choose a sigma for pre-process smoothing either
your segmentation labels or indicator functions to avoid stair-step aliasing.

Sizing Field Creator

This tool allows a user to set parameters for the cleaving sizing field.

	Sampling Rate: the sampling rate of the input indicator functions or calculated indicator functions from segmentation files. The default sample rate will be the dimensions of the volume. Smaller sampling creates coarser meshes. Adjusting this parameter will also affect Cleaver’s runtime, with smaller values running faster.

	Feature Scaling: scales features of the mesh effecting element size. Higher feature scaling creates coaser meshes.

	Lipschitz: the maximum rate of change of element size throughout a mesh. Helpful for meshes with high and low curvature. Will have no effect on meshes with constant element sizing methods.

	Padding: adds a volume buffer around the data. Useful when volumes intersect near the boundary.

	Element Sizing Method: select whether to adaptively/nonuniformly resize tetrahedra for more detail at volume interactions, or to keep tetrahedra sizes constant/uniform based on the sample scale.

	Compute Sizing Field: once you have your desired parameters, click this to create the sizing field. This is assuming a volume has been loaded (ctrl+v or File->Import Volume). New information will be added to the Data Manager at each step. If a sizing field is not created here, a default one will be created for you automatically before cleaving.

[image: Cleaver mesh]

Cleaving Tool

This tab runs the cleaving algorithm and displays steps that have completed.

	Cleave Mesh: Run the cleaving algorithm. The steps are shown as complete with the check below. The rendering window will also update with each applicable step.

Data Manager

This tool displays information about meshes, volumes, and sizing fields loaded and created.

	Mesh: a mesh will have number of vertices, number of tetrahedra, and the min/max mesh boundaries.

	Volume: a volume will display the dimensions, origin, number of materials, the file names, and the associated sizing field (if any other than the default).

Mesh View Options

Here are are a number of options for visualizing the generated mesh.

	Show Axis: Toggle the rendering of the coordinate axis (x-y-z).

	Show BBox: Toggle the rendering of the mesh/volume bounding box.

	Show Mesh Faces: Toggle the rendering of the mesh’s faces.

	Show Edges: Toggle the rendering of the mesh’s edges.

	Show Cuts: Toggle the rendering of nodes where cuts took place.

[image: surface visualization]

	Show Surfaces Only: Toggle the rendering of the tets (volume) vs. the surface
representing the interface between volumes.

	Color by Quality: Toggle the coloring of faces based on the quality of the tet vs. the material itself.

[image: clipping]

	Clipping: Toggle the clipping of tets based on the below sliders.

	Sync: When checked, faces will update during slider movement (slower). Otherwise,
faces will update once the clipping plane has stopped moving (mouse is released).

	X-Y-Z Axes: Select which axis to clip the volume. The associated slider will permit clipping
from one end of the bounding box to the other.

	Material Visibility Locks: A list of the materials is here. When the faces of a material is locked, clipping is ignored for that material and it is always visible. Locked cells refers to tets/volumes that will remain visible despite the clip.

File Menu

	Import Volume: Select 1-10 indicator function NRRDs, or 1 segmentation NRRD (if built in) to load in.

	Import Sizing Field: Load a sizing field NRRD to use for a Volume.

	Import Mesh: Import a tetgen mesh (.node/.ele pair) to visualize.

	Export Mesh: Write the current mesh to file in either node/ele (tetgen) format, or VTK format.

Edit Menu

	Remove External Tets: Removes tets that were created as padding around the volume.

	Remove Locked Tets: Removes tets that were not warped during cleaving.

	Dihedral Angles: Computes the min/max Dihedral angles. And displays them in the status bar.

View

Toggle view of the Sizing Field, Cleaving, Data, and Mesh View tools.

Help

Show information and documentation about Cleaver, as well as issue reporting.

Cleaver Library

To include the cleaver library, you should link to the library build, libcleaver.a or
cleaver.lib and include the following headers in your project:

##CMake calls
include_directories(Cleaver/src/lib/cleaver)
target_link_libraries(YOUR_TARGET ${your_libs} Cleaver/build/lib/libcleaver.a)

There are other headers for different options,
such as converting NRRD files to cleaver indicator functions.
You may wish to write your own indicator function creation methods.
The basic set of calls are in the following code snippet:

#include <cleaver/Cleaver.h>
#include <cleaver/CleaverMesher.h>
...
 //obtain your image fields before this line
 cleaver::Volume *volume = new cleaver::Volume(fields);
 cleaver::CleaverMesher mesher(volume);
 cleaver::AbstractScalarField *sizingField =
 cleaver::SizingFieldCreator::createSizingFieldFromVolume(
 volume,
 (float)(1.0/lipschitz), //defined previously
 (float)sampling_rate, //defined previously
 (float)feature_scaling, //defined previously
 (int)padding, //defined previously
 verbose); //defined previously
 volume->setSizingField(sizingField);
 mesher.setRegular(false);
 bgMesh = mesher.createBackgroundMesh(verbose);
 mesher.buildAdjacency(verbose);
 mesher.sampleVolume(verbose);
 mesher.computeAlphas(verbose);
 mesher.computeInterfaces(verbose);
 mesher.generalizeTets(verbose);
 mesher.snapsAndWarp(verbose);
 mesher.stencilTets(verbose);
 cleaver::TetMesh *mesh = mesher.getTetMesh();
 mesh->writeMesh(output_path + output_name,
 output_format, verbose);
...

Look at the Cleaver/src/cli/mesher/main.cpp file for more details on how to apply and use the different options of the cleaver library.

Known Issues

	On larger data sets with a potentially high number of quadruple points
(> 3 material fields), some functions are failing to ensure valid tets
and meshes, causing bad tets in the final output. This code is being
debugged now for a future release.

	The graphics cards documented in System requirements are known to not support Cleaver.

Building

Overview

Building Cleaver is the process of obtaining a copy of the source code of the project and use tools, such as compilers, project generators and build systems, to create binary libraries and executables.

Cleaver can be compiled from source on Linux platforms (OpenSuSE, Ubuntu etc.), macOS, and Windows.

CMake is a cross-platform build system generator that is used for generating Makefiles, Ninja, Visual Studio or Xcode project files.

The build-system generator provides options to selectively build Cleaver Command Line Tool and Graphical Interface.

Tip

Users of the Cleaver command line tool or graphical interface may not need to build the project as they can instead download and install pre-built packages as described in the Getting Started section.

Build Environment

Windows: 64-bit version of Visual Studio 2015 or newer.

macOS: macOS 10.12+ using either Ninja, Xcode or Unix Makefiles CMake generator.

Linux: GCC compiler supporting C++11 using either Ninja or Unix Makefiles CMake generator.

Build Options

The table below describes some of build options available when configuring Cleaver using CMake.

	Option

	Description

	Default

	BUILD_CLI

	Build Cleaver Command Line Tool (CLI) application

	OFF

	BUILD_GUI

	Build Cleaver Graphical Interface (GUI) application

	OFF

Tip

By default, when both BUILD_CLI and BUILD_GUI are OFF, only the Cleaver Library is built.

Dependencies

Tools

	C++11 64-bit compatible compiler

	Git [https://git-scm.com/] 1.8 or higher

	CMake [https://www.cmake.org/] 3.10.2+

Libraries

	

	Command Line Tool

	Graphical Interface

	ITK

	

	

	Qt

	

	

Qt:

Qt 5 libraries are required to build the Cleaver Graphical Interface. The libraries may be installed by downloading the Qt universal installer [https://www.qt.io/download-open-source] and selecting the Qt 5.15.2 components.

Alternatively, the Qt libraries may be installed through the system package manager or as a least resort by building Qt from source.

ITK:

ITK [http://www.itk.org/] Insight Toolkit 5.0+ is required. See Building ITK.

Building

Once CMake, Qt, ITK have been installed and/or built:

	Download the Cleaver sources.

	Run CMake to configure the project by specifying a build directory, the path to the Cleaver directory containing the src/CMakeLists.txt file.

	Build the project

Linux and macOS

git clone https://github.com/SCIInstitute/Cleaver.git $HOME/Cleaver

cmake \
 -DITK_DIR:PATH=$HOME/ITK-build \
 -DQt5_DIR:PATH=/Path/To/Qt5/lib/cmake/Qt5 \
 -DCMAKE_BUILD_TYPE:STRING=Release \
 -DBUILD_CLI:BOOL=ON \
 -DBUILD_GUI:BOOL=ON \
 -S $HOME/Cleaver/src \
 -B $HOME/Cleaver-build

cmake --build $HOME/Cleaver-build --config Release --parallel 8

Windows

Open a Visual Studio 64 bit Native Tools Command Prompt.

Follow these commands:

git clone https://github.com/SCIInstitute/Cleaver.git %HOMEPATH%/Cleaver

set Qt5_DIR=C:/Path/To/Qt/5.15.2/msvc2019_64/lib/cmake/Qt5

cmake -G "NMake Makefiles" ^
 -DQt5_DIR:PATH="%Qt5_DIR%" ^
 -DITK_DIR:PATH="%HOMEPATH%/ITK-build" ^
 -DCMAKE_BUILD_TYPE:STRING=Release ^
 -DBUILD_CLI:BOOL=ON ^
 -DBUILD_GUI:BOOL=ON ^
 -S %HOMEPATH%/Cleaver/src ^
 -B %HOMEPATH%/Cleaver-build

cmake --build %HOMEPATH%/Cleaver-build --config Release --parallel 8

Warning

Be sure to copy the Qt5 DLL files to the Executable directory for the program to run.

copy %Qt5_DIR%\..\..\..\bin\Qt5Core.dll %HOMEPATH%\Cleaver-build\bin\
copy %Qt5_DIR%\..\..\..\bin\Qt5Gui.dll %HOMEPATH%\Cleaver-build\bin\
copy %Qt5_DIR%\..\..\..\bin\Qt5OpenGL.dll %HOMEPATH%\Cleaver-build\bin\
copy %Qt5_DIR%\..\..\..\bin\Qt5Widgets.dll %HOMEPATH%\Cleaver-build\bin\

All Platforms

Your paths may differ slightly based on your Qt5 and ITK versions and where they are installed/built.

The console version ccmake, or GUI version can also be used. You may be prompted to specify your location of the Qt installation. If you installed Qt in the default location, it should find Qt automatically. After configuration is done, generate the make files or project files for your favorite development environment and build.

The Cleaver applications will be built in Cleaver-build/bin.

Testing

The repo comes with a set of regression tests to see if recent
changes break expected results.

Linux and macOS

To build the tests, you may set BUILD_TESTING to ON in using either ccmake or when calling CMake:

cmake -DBUILD_TESTING=ON $HOME/Cleaver/src

Windows

The gtest library included in the repo needs to be
built with forced shared libraries on Windows, so use the following:

cmake -DBUILD_TESTING=ON -Dgtest_forced_shared_crt=ON %HOMEPATH%/Cleaver/src

Be sure to include all other necessary CMake definitions as annotated above.

Building ITK

Tip

Consider building ITK only if not already available through the system package manager.

Linux and macOS

Download ITK sources:

git clone -b v5.2.0 https://github.com/InsightSoftwareConsortium/ITK $HOME/ITK

Configure with:

cmake \
 -DBUILD_SHARED_LIBS=FALSE \
 -DBUILD_EXAMPLES=FALSE \
 -DBUILD_TESTING=FALSE \
 -S $HOME/ITK \
 -B $HOME/ITK-build

Then build ITK.

cmake --build $HOME/ITK-build --config Release --parallel 8

Windows

Download ITK sources:

git clone -b v5.2.0 https://github.com/InsightSoftwareConsortium/ITK %HOMEPATH%/ITK

Open a Visual Studio 64 bit Native Tools Command Prompt.

Configure with:

cmake -G "NMake Makefiles" ^
 -DBUILD_SHARED_LIBS=FALSE ^
 -DBUILD_EXAMPLES=FALSE ^
 -DBUILD_TESTING=FALSE ^
 -S %HOMEPATH%/ITK ^
 -B %HOMEPATH%/ITK-build

Then build ITK.

cmake --build %HOMEPATH%/ITK-build --config Release --parallel 8

Getting Help

See https://itk.org/ITKSoftwareGuide/html/

API

C++

Reference documentation for Cleaver C++ classes can be found in the Doxygen Code Reference [https://sciinstitute.github.io/cleaver.pages/doxygen/index.html].

Index

Page Not Found

Sorry, we couldn't find that page.

Try using the search box or go to the homepage.

 _images/mesh.png
0 @ Sizing Field Creator

Sampling Rate: 1.00 z
Feature Scaling 1.0000 z
Lipschitz: 0.2000 .
Padding: 0 z
Element Sizing Method: Adaptive

Compute Sizing Field

0 @ Cleaving Tool

Cleave Mesh

Background Mesh
Build Adjacency
Sample Volume
Compute Alphas
Compute Interfaces
Generalize Tets
Snap and Warp
Stencil Tets

Fix Vertex Wind-up

0 @ Data Manager

[o Volume

[o spheresi

[o spheres2

[o spheres3

[o spheres4

[o Volume-computed-sizing-field

0 @ Mesh View Options

Show Axis
Show BBox
Show Mesh Faces
Show Mesh Edges
Show Cuts
Surfaces Only
Color by Quality
Clipping: Sync:

¥-axis
y-axis

Z-axis

Material Visibility Locks
Material Faces Cells

0

1
2
3

Successfully completed meshing!

_images/clip.png
oo

oooo g8

OORE g

_static/file.png

_static/minus.png

_images/application.png
[Cleaver 2.3

[x] =] Sizing Field Creator (x] 5] Data Manager
Sampling Rate: 1.00 1<)
Feature Scaling 1.0000 1<)
Lipschitz: 0.2000 2]
Padding: 0 |:::|

Element Sizing Method: | Adaptive B

Compute Sizing Field

o @ Mesh View Options

9 Show Axis

2 Show BBox

2 Show Mesh Faces
[Show Mesh Edges
|| Show Cuts

|| Surfaces Only

|| Color by Quality

0 @ Cleaving Toel

Cleave Mesh

Background Mesh

Build Adjacency

Sample Volume — Clipping: | | Sync:]
Compute Alphas . | x-axis -
Compute Interfaces | y-axis L}
Generalize Tets @ | z-axis)
Snap and Warp . Material Visibility Locks

. Material | Faces | Cells

Stencil Tets
Fix Vertex Wind-up

Program Cleaver started normally.

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cleaver’s documentation!

 		
 About

 		
 Overview

 		
 Method

 		
 Authors

 		
 Acknowledgement

 		
 Citing Cleaver

 		
 Bibliography

 		
 Getting Started

 		
 Introduction

 		
 System requirements

 		
 Using Installer

 		
 Using Python

 		
 ITK

 		
 VTK

 		
 Using 3D Slicer

 		
 Using C++ and CMake

 		
 Manual

 		
 Command Line Tool

 		
 Graphical Interface

 		
 Sizing Field Creator

 		
 Cleaving Tool

 		
 Data Manager

 		
 Mesh View Options

 		
 File Menu

 		
 Edit Menu

 		
 View

 		
 Help

 		
 Cleaver Library

 		
 Known Issues

 		
 Building

 		
 Overview

 		
 Build Environment

 		
 Build Options

 		
 Dependencies

 		
 Tools

 		
 Libraries

 		
 Building

 		
 Linux and macOS

 		
 Windows

 		
 All Platforms

 		
 Testing

 		
 Linux and macOS

 		
 Windows

 		
 API

 		
 C++

_static/images/application.png
[Cleaver 2.3

[x] =] Sizing Field Creator (x] 5] Data Manager
Sampling Rate: 1.00 1<)
Feature Scaling 1.0000 1<)
Lipschitz: 0.2000 2]
Padding: 0 |:::|

Element Sizing Method: | Adaptive B

Compute Sizing Field

o @ Mesh View Options

9 Show Axis

2 Show BBox

2 Show Mesh Faces
[Show Mesh Edges
|| Show Cuts

|| Surfaces Only

|| Color by Quality

0 @ Cleaving Toel

Cleave Mesh

Background Mesh

Build Adjacency

Sample Volume — Clipping: | | Sync:]
Compute Alphas . | x-axis -
Compute Interfaces | y-axis L}
Generalize Tets @ | z-axis)
Snap and Warp . Material Visibility Locks

. Material | Faces | Cells

Stencil Tets
Fix Vertex Wind-up

Program Cleaver started normally.

_static/splash.png
Cleaver

Meshing

_static/images/splash.png
Cleaver

Meshing

_static/images/surface.png
"3 Cleaver 22

File Edit View Help
‘Sizing Feld Creator 8 x

o
x

Cleaving Tool

Cleave Mesh ——

mple Vol

Compute Alphas

Vit L

Materil Faces

oooo
oooo

_static/images/clip.png
oo

oooo g8

OORE g

_static/images/mesh.png
0 @ Sizing Field Creator

Sampling Rate: 1.00 z
Feature Scaling 1.0000 z
Lipschitz: 0.2000 .
Padding: 0 z
Element Sizing Method: Adaptive

Compute Sizing Field

0 @ Cleaving Tool

Cleave Mesh

Background Mesh
Build Adjacency
Sample Volume
Compute Alphas
Compute Interfaces
Generalize Tets
Snap and Warp
Stencil Tets

Fix Vertex Wind-up

0 @ Data Manager

[o Volume

[o spheresi

[o spheres2

[o spheres3

[o spheres4

[o Volume-computed-sizing-field

0 @ Mesh View Options

Show Axis
Show BBox
Show Mesh Faces
Show Mesh Edges
Show Cuts
Surfaces Only
Color by Quality
Clipping: Sync:

¥-axis
y-axis

Z-axis

Material Visibility Locks
Material Faces Cells

0

1
2
3

Successfully completed meshing!

